MOTION OF LARGE GAS BUBBLES ASCENDING IN A LIQUID
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An equation is derived for the ascent velocity of large gas bubbles in a liquid. This velocity is assumed to
be governed by the propagation of a wavelike perturbation caused by the bubble in the liquid.

NOTATION

w—bubble (or drop) velocity
y—specific gravity
p—dynamic viscosity
v—kinematic viscosity
r—bubble (or drop) radius
o—surface tension
¢—coefficient of friction
g—gravitational acceleration
D—bubble (or drop) diameter
p—pressure

c—propagation velocity of the wavelike perturbation
A—wavelength

A single prime indicates the heavy phase of the system, two primes indicate the light phase, and the subscript
m indicates extreme values,

There have been many theoretical [1-3] and experimental {4—6] studies of the ascent velocity of bubbles in
liquids, but the relationship between this velocity and the bubble dimensions has not yet been definitely established, At
present, there are at least four different regions in the bubble-diameter range from 0 to 20 mm requiring different
calculations procedures [7],

1. Region of laminar flow around bubbles retaining spherical shape, This region is limited to Reynolds numbers
R < 2, The ascent velocity is given by
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2. Region of the motion of bubbles in the shape of planar, pulsating spheroids. This region is limited to Reynolds
numbers within the range 2 < R < 4A% %, The equation recommended for determining the bubble ascent velocity is
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3. Region of the motion of planar, relatively stable bubbles, This region is restricted to the Reynolds number
range 4A%% < R < 3A%, The equation for the ascent velocity is

w=1.35<l_(1,,—gi77,§>0.5 ' (3)

4, Region of the motion of mushroom-shaped bubbles, This region is limited to Reynolds numbers R> 3A%%, In
this extremely broad region, the bubble velocity is calculated from
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The quantity A, which defines the limits of applicability of Eqs. (1)—(4), is given by
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Figure 1 shows experimental data from [6, 8, 9] showing the dependence of the ascent velocity of individual air
bubbles in water at p = 9.8 - 10* N/m?. The dependence is seen to be quite complicated. However, the division of the
entire D range into four characteristic regions cannot be considered to be a natural one, reflecting some real
difference in the mechanisms governing the bubble velocity in the given medium. The artificiality of the definition of
these regions is also evident from the structure of Egs. (1)—(4).
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Fig. 1. Dependence of the ascent velocity

w" (m/sec) on the bubble diameter D(mm)

atp=9.8-10* N/m? 1-4) data from [86, 8,
9, 15, respectively].

We propose here a "universal" equation, i, e., one correlating the experimental data in the third and fourth
regions. This equation was obtained under the assumption that the bubble ascent velocity is identically equal to the

propagation phase velocity of capillary waves of length 7D in the liquid. This assumption can be easily understood on
the basis of the following arguments.
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Fig. 2. Dependence of the propagation

velocities a® (m/sec?) of capillary and

gravitational waves on the wavelength
A(m).

The small value of the friction between a liquid in gas at a small relative velocity is due to the nondetached
nature of the flow around the ascending bubbles [10]. This factor also tends to improve the elasticity of the interface
and the small "rigidity" of large bubbles, since any local change in pressure causes a corresponding change in shape,
Accordingly, it may be assumed that the liquid particles flowing around a bubble are not caught up in the bubble motion,
but instead, remaining at the same horizontal level, merely undergo oscillations about an equilibrium position. The
oscillation velocity and the propagation velocity of a wavelike perturbation are related by

v = Ap/p’a. (5)

Here Ap is the excess pressure in the wave, p'a is the characteristic impedence in the medium, p' is the density of
the medium, and a is the wave propagation velocity.

The mechanical energy of an oscillating system consists of the kinetic and potential energies, For a no~loss

system, periodic changes of one type of energy into the other are characteristic; at any time, the total oscillatory
energy per unit volume is, according to [11],

== 1/29'1)2. (6)
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The kinetic energy is carried by the mass element, while the potential energy is carried by the elastic element.
In this system, the elastic element is characterized by the surface tension and the area of the interface, Therefore, it
is obvious that

E=o(2- 4 (7)

r1

The horizontal radius r; of the bubble does not play an important role, since the forces acting in this plane
compensate for each other (it is assumed that the bubble has a nearly circular cross section in this plane), Relation
(7) may therefore be rewritten in terms of the vertical radius alone:

E =~ olry . (8)
‘ Comparing (6) and (8), we find the oscillatory velocity of the system to be
v=Vi/rp . (9)

The excess pressure in this oscillatory system is a Laplace correction which is generally equal to (7).
Experiments yield r; = (1.15-1,20)r, for relatively small bubbles (D = 10 mm). Therefore, within an error of
15—20%, we may assume

Ap = 20/ry. (10)

As noted below, an increase in bubble size reduces the error.

Setting ry = r, and substituting (9) and (10) into (5), we find the propagation velocity for a wavelike perturbation
in the liquid to be

a=V%rp - (11)
The quantity r is given in order of magnitude by
r~Vei(r—17) 3
substituting this into (11), we find
4 %6 ,'_T”) 1/‘
o (PR (12)

Comparing (12) and (4), we see that when £ = 1, the velocities w and a are equal; i.e,, the wave propagation
velocity is equal to the bubble ascent velocity, Under which conditions ¢ = 1 will actually hold in (4) is shown below.

Accordingly, it turns out that the motion of the liquid particles as they flow around the bubbles is actually
similar to that which occurs in the case of a wavelike motion of the interface between two immiscible liquids, and
that the velocity of an object carrying the perturbation in the liquid is equal to the propagation velocity of a wave
formed at the interface.

It is known from the theory of surface waves that there are two limiting types of waves, gravitational and
capillary, which are separated by an intermediate range of wavelengths in which the motion is of 2 mixed nature.
Figure 2 shows the dependences of the velocity of gravitational (straight line) and capillary (hyperbolic curve) waves
on their wavelength, The combined effects of gravitational and capillary forces on the wave velocity are shown by the
dashed curve. In the general case (dashed curve), the propagation phase velocity of the wavelike perturbation is
described by [11]

2=-_I " ’ IV’
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where A is the wavelength. The minimum wave velocity corresponds to the wavelength

Am =21 Va/ (¥ —1') . (14)

A comparison of the experimental curve in Fig. 1 with the resultant (dashed) curve in Fig. 2 shows that, as
expected on the basis of the above arguments, there is a quantitative as well as a qualitative similarity.
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Accordingly, in order that Eq. (13) be suitable for calculating the bubble ascent velocity, it is sufficient to
establish the relation between the wavelength A with the dimensions of the bubble exciting this wave. Since we have
found that the bubble ascent velocity and the wave propagation velocity are equal, this is easily done, We assume that
the minimum bubble ascent velocity (Fig. 1) corresponds to the minimum resultant wave propagation vélocity (Fig. 2).

The minimum wavelength Ay, is easily calculated from Eq. (14), For water, e.g., we have Ay, = 17.1 mm at
20° C. It is evident from Fig. 1 that Dy, ~ 5.5 mm. Accordingly, we have

Ap/Doy = 3, (15)
This relation should evidently hold for all liquids,

Since A = Ay, is a particular case of the possible wavelength values for which the velocity is given by Eq. (13), it
may be assumed that Eq. (15) will also hold for the entire wavelength range; i, e.,

A = aD. (16)

Substitution of (16) into (13) yields

(g ¥ = 2¢s )’/z
w“( 2 Y Ee DAL - an

The solid curve in Fig. 1 shows data calculated from Eq. (17). This equation describes the experimental data
completely satisfactorily over a wide range of bubble diameters D = 1.5 mm.

The expression in the radical in Eq. (17) is the sum of gravitational (first term) and capillary (second term)
forces. As D increases, the role of the second term decreases, so the error introduced by the inaccuracy of Eq. (16)
also decreases,

Interestingly, when A = A, Eq. (13) yields

4o?s (7 — 7Y \ake
at pressures close to atmospheric, i, e., when the quantity y" can be neglected, this relation is analogous to Eq, (4),
obtained by Frank-Kamenetskii for the ascent velocity of large, deformed bubbles [7]. Accordingly, Eq. (4) is a
particular case of the more general relation (17) and holds in an extremely narrow region of bubble sizes, near the
value D = A, /r (in the range 4 mm < D < 7 mm), where the ascent velocity actually depends weakly on the bubble size.
Only in this case can the drag coefficient in (4) be assumed equal to unity. The introduction of the quantity £ into (4)
should be counsidered as being necessary to take into account unknown factors affecting the bubble ascent velocity.
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Fig. 3. Comparison of experimental data of various

authors on the motion of bubbles and drops in a

liquid with data calculated from Eq. (19), in terms

of the dimensionless quantities ® and v: 1-4) water-

air [13, 6, 8, 15, respectively]; 5) saponin-air [8];

6) cyclohexane [8]; T7) water-hydrogen [8]; 8) water-
air [9].
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Although Eq. (17) was obtained for the ascent velocity of bubbles, there is no fundamental difference between the
mechanisms for the ascent of bubbles and drops, so Eq. (17) should also hold for the motion of drops in liguids. For
convenience in comparing the experimental data on the ascent of bubbles and drops by means of Eq. (17), we convert
the data to dimensionless form and plot the function :

w?D (v - 7") D2y —q")
2 T & > (19)

O =0 (v) (a) =

Figure 3 shows experimental and calculated data in terms of the coordinates in (19). Most of the experimental
data obtained by different authors for gas-liquid systems are seen to correlate satisfactorily with the calculated data
(solid line). This is not true of the experimental data of Peebles and Garber {12] (dot-dash line 1), obtained during
bubble motion in a tube of relatively small diameter (25 mm). The deviation of these points is evidently due to the
effects of the solid walls on the propagation velocity of the wavelike perturbation. Also shown in this figure are
experimental data [13] on the motion of liquid drops (dashed line 2). The qualitative nature of the dependence is
retained, but there is a significant quantitative deviation, The actual drop velocities turn out to be lower than those
calculated by Eq. (17). The discrepancy between the experimental w = f(D) dependences for drops and bubbles is
evidently due to the fact that the liquid flow around a drop is not nondetached, and the interaction between the
components at the liquid-liquid interface cannot be neglected. The presence of fangential stresses at the interface
causes irreversible energy losses, so the drop moves more slowly.
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